Medical and Dental Consultantsí Association of Nigeria
Home - About us - Editorial board - Search - Ahead of print - Current issue - Archives - Submit article - Instructions - Subscribe - Advertise - Contacts - Login 
  Users Online: 2234   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 21  |  Issue : 2  |  Page : 170-175

Antibacterial Effect of Surface Pretreatment Techniques against Streptococcus Mutans


1 Department of Restorative Dentistry, Faculty of Dentistry, Istanbul University, Bezmialem, Turkey
2 Department of Restorative Dentistry, Faculty of Dentistry, Bezmialem University, Bezmialem, Turkey
3 Department of Biostatistics, Faculty of Medicine, Istanbul University, Istanbul, Turkey

Correspondence Address:
Dr. H S Sancakli
Department of Operative Dentistry, Faculty of Dentistry, Istanbul University, Capa, Istanbul
Turkey
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/njcp.njcp_98_16

Rights and Permissions

Objective: The aim of this study was to evaluate the antibacterial surface pretreatment methods against Streptococcus mutans within the infected dentin surface using a tooth cavity model. Material and Methods: Seventy-two cavities were prepared on caries-free third molars (n = 8). After sterilization, teeth were inoculated with S. mutans for 48 h. One cavity of each tooth was used to evaluate the infection. Following inoculation, infected cavity surfaces were treated either with (1) Er:YAG Laser (1W; 5x5s, Smart 2940D Plus, Deka Laser), (2) Ozone (80s; HealOzone, Kavo), (3) ErYAG-Ozone combination, (4) Er:YAG-Ozone-CHX combination, (5) Chlorhexidine (CHX), (6) Clearfil Protect Bond (PB), (7) potassium-titanyl-phosphate (KTP) Laser (1W; 60 s, SMARTLITE D, Deka Laser), (8) KTP-Ozone combination, and (9) KTP-Ozone-CHX. Standardized amounts of dentin chips were obtained from the cavity walls, and the number of bacteria recovered was counted. Kruskal–Wallis test was used for statistical analyzes. Results: Both sole antibacterial materials, CHX or Protect Bond application, exhibited the most effective antibacterial activity with 125 and 156 CFU is an acronym of “colony forming unit” usullay mentioned by acronym. (CFU/ml), respectively, among the groups evaluated (P < 0.05). Er:YAG laser irradiation and its combinations with other antibacterial surface pretreatment applications also inhibited the bacterial growth with, respectively, 1444, 406, and 294 CFU/ml bacterial recovery being more efficient than KTP laser irradiation and ozone combinations. Conclusions: As an alternative device with photodynamic effects, Er:YAG and KTP laser irradiations and their further combinations during the cavity pretreatment procedure with chlorhexidine and ozone treatments exerted antibacterial effect against S. mutans, whereas chlorhexidine and antibacterial dentin bonding application solely have the highest antibacterial effects.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2242    
    Printed53    
    Emailed0    
    PDF Downloaded416    
    Comments [Add]    

Recommend this journal